Regulation of chondroitin sulphate proteoglycan and reactive gliosis after spinal cord transection: effects of peripheral nerve graft and fibroblast growth factor 1.

نویسندگان

  • M-J Lee
  • C J Chen
  • W-C Huang
  • M-C Huang
  • W-C Chang
  • H-S Kuo
  • M-J Tsai
  • Y-L Lin
  • H Cheng
چکیده

AIMS The combined treatment of peripheral nerve (PN) graft and fibroblast growth factor (FGF)-1 for spinal cord injury produces functional recovery, but how it affects injury events is still unknown. This project studied the effect of PN graft and FGF-1 on white matter degeneration following spinal cord injury. METHODS Rats were divided into four groups: (i) complete spinal cord transection and T8 segment removed; the remaining three groups underwent transection followed by (ii) PN grafting; (iii) supply of exogenous FGF-1; and (iv) PN grafting plus FGF-1 treatment. Chondroitin sulphate proteoglycan (CSPG) deposition, astrocytes and macrophage activation, cavity size, and calcitonin gene-related peptide and synaptophysin immunoreactivity were compared. RESULTS Peripheral nerve grafting increased CSPG levels compared to transection surgery alone. This CSPG was associated with the proximity to the PN graft. FGF-1 reduced CSPG deposition in grafted animals regardless of the proximity to the graft. The CSPG reduction was accompanied by reduced GFAP expression and macrophage activation. The amount of CSPG with dissociated glycosaminoglycan did not differ between groups. FGF-1 in Schwann cell-astrocyte coculture did not reduce CSPG deposition. Furthermore, the PN graft increased the calcitonin gene-related peptide immunoreactivity and altered the distribution of synaptophysin-positive axons. CONCLUSION Peripheral nerve graft supported sensory re-innervation and partial protection of the grey matter, but up-regulated CSPG in the graft-stump junction compared to non-grafted rats. The reduction of CSPG was caused by FGF-1-PN synergy, and did not involve dissociation of CSPG or the suppression of a general immune response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined treatment using peripheral nerve graft and FGF-1: changes to the glial environment and differential macrophage reaction in a complete transected spinal cord.

We used a complete spinal cord transection model in which the T8 spinal segment was removed to study the effect of combined treatment of peripheral nerve graft and application of FGF-1 on the glial environment. The combined treatment resulted in reduced astrocytic glial scarring, reactive macrophage gliosis, and inhibitory proteoglycan in the back-degenerated white matter tract. While the macro...

متن کامل

Deoxyribozyme-mediated knockdown of xylosyltransferase-1 mRNA promotes axon growth in the adult rat spinal cord.

In the injured spinal cord, proteoglycans (PGs) within scar tissue obstruct axon growth through their glycosaminoglycan (GAG)-side chains. The formation of GAG-side chains (glycosylation) is catalysed by xylosyltransferase-1 (XT-1). Here, we knocked down XT-1 mRNA using a tailored deoxyribozyme (DNAXTas) and hypothesized that this would decrease the amount of glycosylated PGs and, consequently,...

متن کامل

Fgf2 improves functional recovery—decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury

OBJECTIVES A major impediment for recovery after mammalian spinal cord injury (SCI) is the glial scar formed by proliferating reactive astrocytes. Finding factors that may reduce glial scarring, increase neuronal survival, and promote neurite outgrowth are of major importance for improving the outcome after SCI. Exogenous fibroblast growth factor (Fgf) has been shown to decrease injury volume a...

متن کامل

Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition.

Increased expression of certain extracellular matrix (ECM) molecules after CNS injury is believed to restrict axonal regeneration. The chondroitin sulfate proteoglycans (CSPGs) are one such class of ECM molecules that inhibit neurite outgrowth in vitro and are upregulated after CNS injury. We examined growth responses of several classes of axons to this inhibitory environment in the presence of...

متن کامل

Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.

Behavioral assessments of hindlimb motor recovery and anatomical assessments of extended axons of long spinal tracts were conducted in adult rats following complete spinal cord transection. Rats were randomly divided into 3 groups: 1) sham control group (laminectomy only; n = 12); 2) transection-only group, spinal cord transection at T8 (n = 20); and 3) experimental treatment group, spinal cord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropathology and applied neurobiology

دوره 37 6  شماره 

صفحات  -

تاریخ انتشار 2011